a) ¿ Cuál es la probabilidad de que entre las siete fichas haya exactamente cinco que tengan un '3' ?
b) ¿ Cuál es la probabilidad de obtener exactamente cinco fichas con un mismo número ?
SOLUCIÓN.
Las 28 fichas tienen la misma probabilidad de ser elegidas; utilizaremos, pues, la regla de Laplace. Emplearemos el método combinatorio para calcular el número de casos favorables y el número de casos posibles.
a) Denotemos por A_3 al suceso pedido, entonces P(A_3)\overset{\text{def}}{=}\dfrac{N(A_3)}{N} El número de casos en total, esto es el número de maneras de elegir un conjunto
de 7 fichas a la vez de un total de 28, N, es igual a \binom{28}{7}=1\,184\,040
Vamos a calcular ahora el número de casos favorables N(A_3). Como hay \binom{7}{5} maneras de elegir 5 fichas que tengan un '3' ( ya que hay 7 fichas que tengan un '3' ) y, por tanto, \binom{28-7}{2} maneras de elegir las dos fichas restantes ( al haber 28-7 fichas que no tengan el '3' ), llegamos a, por el principio multiplicativo, N(A_3)=\dfrac{\binom{7}{5}\cdot \binom{28-7}{7-5}}{\binom{28}{7}}=\dfrac{4\,410}{1\,184\,040}=\dfrac{49}{13\,156}\approx 0,0037
OBSERVACIÓN. La expresión obtenida corresponde a la probabilidad del modelo llamado hipergeométrico
b)
Ahora nos interesamos no sólo por que salga un '3', sino también por que salga también cualquiera de los otros seis números. Podemos repetir lo que acabamos de hacer para calcular la probabilidad de que entre las siete fichas haya exactamente cinco que tengan cualquiera de los otros seis números, por lo que resulta evidente que P(A_0)=P(A_1)=\ldots=P(A_6)=\dfrac{49}{13\,156}, luego la probabilidad pedida en este segundo apartado es P(A_0 \cup \ldots \cup A_6), y siendo dichos sucesos incompatibles (1), resulta ser igual a P(A_0)+\ldots+P(A_6)=7\cdot P(A_3) esto es 7\cdot \dfrac{49}{13\,156}=\dfrac{343}{13\,156}\approx 0,0261
ACLARACIÓN 1: Para pensar con claridad, tengamos en cuenta que las 28 fichas son las siguientes
06 05 16 04 15 26 03 14 25 36 02 13 24 35 46 01 12 23 34 45 56 00 11 22 33 44 55 66Así que no es posible que los sucesos A_i y A_j ( donde i y j toman valores en \{0,1,2,\ldots,6\} ) sean compatibles, ya que, por ejemplo, si (i,j)=(3,4), fijado i=3 hay otras 6 fichas que contienen el '3': (3,0),(3,1),(3,2),(3,3),(3,5),(3,6) ; y, fijado j=4, hay otras 6 fichas que contienen el '4': (0,4),(1,4),(1,4),(4,4),(5,4),(6,4). Si pensamos en la posibilidad de tener cinco fichas con el '3' y con el '4', vemos que es imposible, habida cuenta que sólo disponemos de 7 fichas, y sólo una, la (3,4) contiene el '3' y el '4'. Lo mismo ocurre con los otros pares de números. Así que A_i \cap A_j = \emptyset, luego P(A_i \cap A_j)=0 para todo i y todo j ( con i \neq j ) en \{0,1,2,\ldots,6\}, esto es, los sucesos A_i y A_j con i \neq j son incompatibles.
\square