domingo, 27 de noviembre de 2016

Repartiendo cartas

ENUNCIADO. Consideremos una baraja española. Se dan seis cartas a un jugador. ¿ Cuál es la probabilidad de que las seis cartas sean del mismo palo ?.

SOLUCIÓN. Todas las cartas tienen la misma probabilidad de ser elegidas, por lo que podemos aplicar la regla de Laplace. Emplearemos el método combinatorio.

Denotemos por $A$, el suceso "obtener seis cartas de alguno de los cuatro palos". Procedemos a calcular el número de casos favorables $N(A)$ a dicho suceso, así como el número total de maneras de elegir seis cartas, $N$, de entre las $40$ cartas que tiene la baraja.

El número de maneras de elegir seis cartas del primer palo, o del segundo, o del tercero, o bien del cuarto palo, podemos calcularlo de la siguiente forma: Como hay $\binom{4}{1}$ maneras de elegir un determinado palo y $\binom{10}{6}$ maneras de elegir seis cartas de uno de dichos cuatro palos, entonces $N(A)=\binom{4}{1}\cdot \binom{10}{6}=840$ casos favorables a dicho suceso. Por otra parte, el número total, $N$, de maneras de dar seis cartas es $\binom{40}{6}=3\,838\,380$

Entonces, por la regla de Laplace, $$P(A)\overset{\text{def}}{=}\dfrac{N(A)}{N}=\dfrac{840}{3\,838\,380} \approx 0,00022 = 0,022\,\%$$

$\square$