Ejemplo I)
En la parte superior de la fotografía de la pizarra se trata el estudio del caso de una polea ideal de masa nula ( que no gira ) y en la inferior el caso de una polea con masa no despreciable ( considerando su giro ). En el primer caso (la polea no gira y la cuerda se desliza sin rozamiento por la ranura), con los datos del problema ( el radio de la polea y las masa de los cuerpos que cuelgan de la cuerda), el sistema de ecuaciones planteado permite calcular la tensión de la cuerda y la aceleración lineal de los cuerpos, que naturalmente es la misma. En el segundo caso ( la polea gira ), partiendo de los datos ( momento de inercia de la polea, masa de los dos cuerpos que cuelgan de la cuerda ), el sistema de ecuaciones planteado permite calcular las tensiones, la aceleración lineal y la aceleración angular de la polea.
Ejemplo II)
En ambos casos, ahora, las cuerdas están enrolladas en las correspondientes partes cilíndricas de la polea; éstas, por tanto, giran solidariamente por efecto del peso de los cuerpos que cuelgan de los extremos. En el primer caso, ambas cuerdas se desenrollan en el mismo sentido; en el segundo, mientras una se enrolla ( la que corresponde al cuerpo de menor masa que cuelga de ella ), la otra ( de la que pende el cuerpo de mayor masa ) se desenrolla. En cualquiera de los dos casos, la polea ( formada por los dos cilindros unidos en una sola pieza ) gira siempre en el mismo sentido. En cada una de las situaciones ( reseñadas en la imagen con A y B ), y a partir de los datos ( los radios de los dos cilindros que componen la polea, las masa de los cuerpos que cuelgan de las cuerdas, el momento de inercia de la polea ) los respectivos sistemas de ecuaciones planteados permiten calcular las tensiones, las aceleraciones lineales y la aceleración angular de la polea.