lunes, 11 de diciembre de 2023

Una ecuación que os causará sorpresas

Encaremos el siguiente reto (propio de Olimpiada Matemática), que consiste en intentar resolver la ecuación en el conjunto de los números complejos: $$1^x=2$$

Veamos, primero, que no es posible encontrar soluciones en el conjunto de los números reales. En efecto, podemos interpretar el miembro de la izquierda como la función real de una variable real: $f(x):=1^x=1 \,\forall, x\in \mathbb{R}$; es decir, es la función constante, con todas las ordenadas igual a $1$. Por otra parte, el segundo miembro, $g(x):=2$ es también una función constante, pero con todas las ordenadas igual a $2$. Es claro que las gráficas de $f(x)$ y $g(x)$ no van a intersecarse, puesto que $1\neq 2$, luego la ecuación no tiene solución en $\mathbb{R}$.

Sin embargo, como enseguida vamos a ver, la ecuación planteada sí tiene solución en el conjunto de los números complejos. Para ello, vamos a recordar la fórmula de Euler: $$e^{i\,\theta}=\cos\,\theta+i\,\sin\,\theta$$ siendo $\theta$ un ángulo en el plano complejo.

Entonces, démonos cuenta de que el $1$ de la base de la potencia $1^x$ del primer miembro puede escribirse de la forma $1=e^{i\,2k\pi}, \text{con}\;k\in \mathbb{Z}$. En consecuencia, la ecuación planteada, $1^x=2$, puede escribirse de la forma $$\displaystyle \left(e^{i\,2k\pi}\right)^x=2\;\,\forall k\in \mathbb{Z}$$ que podemos escribir de la forma $$\displaystyle e^{i\,2k\,\pi\,x}=2\;\,\forall k\in \mathbb{Z}$$ Operando con el logaritmo neperiano en cada miembro, $$\displaystyle \ln\,e^{i\,2k\,\pi\,x}=\ln\,2\;\,\forall k\in \mathbb{Z}$$ y por tanto, $$\displaystyle i\,2k\,\pi\,x \cdot \underset{1}{\underbrace{\ln\,e}}=\ln\,2\;\,\forall k\in \mathbb{Z}$$ en consecuencia, la solución consta de infinitos números complejos, con la siguiente estructura:
$$x=\dfrac{\ln\,2}{2k\,\pi\,i}=\dfrac{i\,\ln\,2}{2k\,\pi\,i^2}=-\dfrac{i\,\ln\,2}{2k\,\pi};\text{donde}\; \mathbb{Z} \ni k \neq 0$$ esto es, $$\displaystyle x\in \left\{ \pm\,\dfrac{i\,\ln\,2}{2\,\pi}, \pm\,\dfrac{i\,\ln\,2}{4\,\pi}, \pm\,\dfrac{i\,\ln\,2}{6\,\pi}, \ldots \right\}$$

$\diamond$

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios