sábado, 17 de noviembre de 2018

Períodos de las funciones seno, coseno y tangente

ENUNCIADO. El período de las funciones $\sin(x)$ y $\cos(x)$ es $2\,\pi$ rad; y, el de la función $tan(x)$ es $\pi$ rad. Justifíquense esas afirmaciones.

SOLUCIÓN. La tres primeras raíces consecutivas de la función seno son $0$, $\pi$ y $2\,\pi$, pues satisfacen la ecuación $\sin(x)=0$; entonces, como el período $T$ es igual a la distancia entre la tercera y la primera raíz, tenemos que $T=2\,\pi-0=2\,\pi$ rad. Para la función coseno, las tres primeras raíces son $\pi/2$, $3\,\pi/2$ y $5\,\pi/2$; y, como el período -- al igual que en el caso de la función seno -- es la distancia entre la tercera y la primera raíz, tenemos que es igual a $| 5\,\pi/2- \pi/2| = 2\,\pi$ rad. En el caso de la función tangente, el período es igual a la distancia entre las dos primeras raíces. Como éstas son $0$ y $\pi$ rad, pues satisfacen la ecuación $\tan\,(x)=0$, el período es igual a $|\pi-0|=\pi$ rad. $\square$

viernes, 16 de noviembre de 2018

Períodos de las funciones trigonométricas

ENUNCIADO. Averiguar el período de la función $f(x)=2\,\sin 5x$; el de la función $g(x)=3\cos\,5x$, y el de la función $h(x)=4\,\tan\,7x$

SOLUCIÓN. Recordemos que una función $\Phi(x)$ es periódica si existe un número real $T$ tal que para todo valor $x$ que tenga imagen por $\Phi$, se tiene que $\Phi(x+T)=\Phi(x)$.


I) Sabemos que la función seno es periódica y su período es $2\,\pi$ rad [1], luego $\sin\,5x = \sin\,(5x+2\,\pi) = \sin\,\left(5\,(x+\dfrac{2}{5}\,\pi)\right)=\sin\,(5\,x')$, donde $x'=x+\dfrac{2}{5}\,\pi$, por lo que el período de la función $\sin\,5x$ es $\dfrac{2}{5}\,\pi$ rad; y, por tanto, el período de la función pedida, $f(x)=2\,\sin\,5x$, también es $\dfrac{2}{5}\,\pi$ rad, pues la amplitud de la misma ( en este caso, el factor '$2$' ) no afecta al período de la misma.

II) Otra manera de determinar el período es la siguiente. La distancia entre tres ceros consecutivos de la función seno es igual al período; calculemos los tres primeros ceros (raíces ): $\sin 7x = 0 \Leftrightarrow 7x \in \{ 0\,,\,\pi/7\,,\,2\,\pi/7\}$, luego $T=|x_3-x_1|=|2\,\pi/7-0=2\,\pi/7$ rad

-oOo-

Por lo que respecta a la función coseno pedida, tengamos en cuenta que el período de la función seno es el mismo que el de la función coseno [1], esto es, $\cos\,(x+2\pi)=\cos\,x$, y desde luego, tampoco le afecta la amplitud -- en el caso que nos ocupa es '3' -- por lo que el período de la función $g(x)=3\cos\,5x$ es, tambíen, $\dfrac{2}{5}\,\pi$ rad, razonando de manera análoga que en la pregunta anterior.

-oOo-

Para terminar, discutamos cuál es el período de la función $h(x)=4\,\tan\,7x$. Sabemos que el perído de la función $\tan\,x$ es $\pi$ rad [1], esto es, $\tan\,x = \tan\,(x+\pi)$. Entonces, $\tan\,7x = \sin\,(7x+\pi) = \tan\,\left(7\,(x+\dfrac{1}{7}\,\pi)\right)=\tan\,(7\,x')$, donde $x'=x+\dfrac{1}{7}\,\pi$, por lo que el período de la función $\tan\,7x$ es $\dfrac{1}{7}\,\pi$ rad; y, por tanto, el período de la función, $h(x)=4\,\tan\,7x$, es $\dfrac{1}{7}\,\pi$ rad, pues la amplitud de la misma ( en este caso, el factor '$4$' ), como ya sabemos, no afecta al período de la misma.
$\square$